WCDG meets monthly September to May on the 3rd Wednesday of the month. Meetings are public and include a light dinner & social hour followed by a speaker.
Email us at washchrom@gmail.com. Follow us on LinkedIn.


December Meeting

Wednesday, December 6, 2017
USP, 12601 Twinbrook Pkwy, Rockville, MD 20852
6:00PM dinner & social
7:00PM presentation

Speaker:
Joseph Zaia, Boston University
Title: How to assign protein site-specific glycosylation

Abstract: Glycosylation modulates protein physico-chemical properties central to folding and binding partner interactions. Protein site-specific glycosylation that occurs in in the endoplasmic reticulum and Golgi apparatus is heterogeneous as a rule. In addition, the glycans present at a given protein site vary spatially and temporally. Thus, glycosylation depends on the cell growth environment.  For glycosylated biologic drugs, this means that the glycosylation structure of the active molecular form is often not known. Further, it means that glycosylation must analyzed carefully to insure that drug molecules meet release criteria for function and stability. Because the masses of complex glycopeptides cannot be predicted from genomic information, standard proteomics database search workflows do not suffice for defining the glycan structures that exist at a given protein site. In fact, glycan heterogeneity multiplies the number molecular forms at each glycosylation site by more than 10-fold. In order to assign protein site-specific glycosylation, it is necessary to use tailored separations, MS-based data acquisition, and bioinformatics methods. This presentation will summarize the state-of-the art for assignment of protein site-specific glycosylation and the impacts of (i) separation method for reversed phase chromatography versus capillary electrophoresis for on-line analysis of glycoproteins, (ii) analyzer speed and resolution and (iii) sample complexity. The presentation will demonstrate analyses of glycoprotein samples of increasing complexity. Examples will include influenza A virus hemagglutinin, proteoglycans and glycoproteins from mammalian organ tissue.

Bio: TBA.